Extreme events and the carbon cycle in the coastal ocean from ocean color remote sensing: case studies

Eurico D'Sa, Louisiana State University Maria Tzortziou, The City University of New York Bingqing Liu, The Water Institute of the Gulf

Ishan Joshi, Scripps Institution of Oceanography Fang Cao, East China Normal University

Ocean Carbon From Space 2022 Workshop

Extreme events and impacts on Carbon cycling in the coastal ocean

- Extreme events and disturbances affect aquatic carbon cycling at multiple spatiotemporal scales
- Most impactful in highly connected coastal ecosystems that include rivers, estuaries, wetlands and the shelf waters
- Many studies on phytoplankton response to TCs in the oceanic and shelf waters, but few related to carbon cycling especially in optically complex coastal and estuarine waters
- With projected increase in intensity, frequency and precipitation associated with TCs including storm surge flooding and increasing TC activity near land (Wang and Toumi, 2021 – Science), there is a critical need to improve mechanistic understanding of their impacts on coastal carbon cycling
- We present results of DOC and POC distributions and fluxes in coastal environments (tidal wetlands, estuaries, shelf waters) in response to TC impacts

Atlantic Hurricane Season (2016 – 2021)

- Six consecutive years of above-normal Atlantic season
- Major TC Matthew 2016 US East coast
- Harvey 2017: >500 mm rainfall with return period >2000 years under current climate
- TC Michael 2018: Cat 5 (250 km/hr) at landfall
- 2020 & 2021, two consecutive seasons with 21 named storms
- Zeta Oct. 2020: Fast moving, Cat 3 (185 km/hr)
- Ida Aug. 2021: Cat 4 (240 km/hr); second most destructive and intense TC behind Katrina in 2005.

2021: named storms - 21

Study areas and motivation

- Study areas are in the Chesapeake Bay (US east Coast) and the northern Gulf of Mexico. Field work were conducted in these coastal waters as part of various NASA funded projects.
- Motivation: many of our study sites were impacted by TCs
- Rapid response field study conducted in Galveston Bay following TC Harvey in Sep & Oct 2017

Gabeestoon Baes

Barataria Bay

Apalachico la Bay

Field and satellite Data

- Field data
 - Remote sensing reflectance
 - Particle and CDOM absorption
 - POC & DOC concentrations
 - In situ absorption and backscattering b_{bp}

- Satellite data
 - MODIS-Aqua
 - Landsat 5, 8
 - Sentinel 3 A/B OLCI
 - Sentinel 2 MSI

Capturing biogeochemical exchanges in tidally influenced marsh-estuarine systems

Application of Multiple-Linear-Regression (MLR) Approach DOC algorithm to high spatial resolution imagery (30 m) from Landsat/OLI and Sentinel-2/MSI

Optimal algorithm: Multiple Linear Regression linking DOC to the spectral shape in Landsat/OLI and Sentinel-2/MSI *Rrs* in 443-665 nm.

 $DOC = \exp(0.544 \times \log(R_{rs}(B1)) - 0.571 \times \log(R_{rs}(B2)) - 2.181 \times \log(R_{rs}(B3)) + 1.398 \times \log(R_{rs}(B4)) - 1.406)$

Carbon Cycling in Tidal Wetland Systems

Sub-diurnal, tidal exchanges of DOC in wetland-estuarine systems

Multiple Linear Regression Model - $DOC = \exp\left(\sum_{i} a_i \times \log(Rrs(\lambda_i))\right)$ DOC: 2-20 mgL⁻¹, MAPD < 23%

Blackwater National Wildlife Refuge (Landsat, August 31, 2011)

Cao & Tzortziou 2021 STOTEN

Carbon Cycling in Tidal Wetland Systems

Impact of environmental conditions on tidal DOC exchange

Wind conditions (changing at sub-diurnal scales), significantly affect spatial extent of marsh influence on coastal biogeochemistry

Blackwater National Wildlife Refuge (Landsat, August 31, 2011)

Cao & Tzortziou 2021 STOTEN

Carbon Cycling in Tidal Wetland Systems

Impact of **episodic events** on estuarine DOC dynamics

Passage of hurricane Matthew (October 5, 2016) over the Blackwater National Wildlife Refuge system

Before Hurricane Matthew

1 week after Hurricane Matthew

2 weeks after Hurricane Matthew

Cao & Tzortziou 2021 STOTEN

Carbon cycling in river influenced estuarine-coastal systems: short & long-term trends

Gulf Intracoastal

Waterway (GIWW)

Iarrero 9 SSW

MODIS

25

30

[R²=0.73, N=150 RMSE=2.33]

10 15 20 In-situ DOC (mg L⁻¹)

Long-term DOC trends in Barataria Bay using Landsat 5 TM/MODIS (1985-2012)

DOC (mg L⁻¹) = $0.63 \times a_g 355 (m^{-1}) + 2.47 [All data; R^2 = 0.80]$

30

25

20

15

10

des Allemands

Lower basin

Landsat

[R²=0.69 N=120

RMSE=1.86]

Davis Pond

Annually averaged DOC concentrations in Barataria Bay during 1985-2012 Impacts of two major TCs

- Wetland loss in Barataria Bay is reflected in the increasing annual trend of DOC concentration in the three regions of the Basin
- Impacts of two major extreme events Andrew in 1992 and Katrina in 2005 are considered
- Higher levels of DOC were observed due to disturbance from TCs Andrew & Katrina
- Katrina massive deposition of inorganic sediments due to storm surge (Turner et al. 2006-Science) that likely to contributed to wetland stability and limited land loss. Also reduced carbon loss

DOC and POC distribution and fluxes in northern GoM Using Adaptive Semi-analytic algorithms + Empirical relationships

- QAA-V: Quasi-analytical (QAA; Lee et al. 2001) optimized for turbid waters (Joshi and D'Sa 2018, BGS)
- AD-QAA: Adaptive QAA (combination of QAA-V & QAAv5) for the estuarine-ocean continuum (Joshi and D'Sa 2020; IEEE TGRS)
- From satellite R_{rs} we derive total absorption and backscattering b_{bp}532
- Power-law models (using satellite and field data) used to derive a_{cdom}412
- Relationships between b_{bp} 532 and POC and a_{cdom} 412 and DOC were used to generate POC and DOC maps

D'Sa et al. 2019-Frontiers in Marine Science

Calculating Carbon Fluxes

- River discharge and other point sources to estuaries Fluxes = Water volume discharged x DOC/POC concentrations
 - Currents and tidal data obtained at entrance to estuaries

Water volume transport = current (m/s) x Pass cross-sectional area (m²)

- Hydrodynamic models: Nested high resolution (250 m) NCOM estuarine model
- Model driven by realistic tides, real-time river flows, winds, evaporation & rainfall
- Water volume fluxes in-or-out of the bay were obtained from model by integrating hourly flows (current, m/s x vertical xsection, m²)
- Hourly DOC and POC flux rates over multiple tidal cycles computed : satellite derived POC/DOC x volume of water through passes

Hurricane Harvey (2017): Extreme precipitation event

Rainfall total

River discharge 4000 (b) TR River discharge (m³ s⁻¹) 3000 ······ SJR-E - SJR-W 2000 1000 400 300 200 100 0 -100 Sep Months Aug Nov Jul Oct

D'Sa, Liu & Joshi 2018-Geophysical Research Letters

Water volume, DOC, POC fluxes linked to Hurricane Harvey

- Over 10 days during/following hurricane, ~25x10⁶ kg C (TOC) were rapidly exported from Galveston Bay to shelf waters
- Represented ~0.65% of the annual Mississippi River fluxes to the Gulf of Mexico

D'Sa et al. 2018-Geophysical Research Letters

Hurricane Michael (2018): High wind impact, fast moving, strong storm surge

•Average flux of organic carbon exported between 5-21 Oct were much greater for DOC (0.86x10⁶ kg C d⁻¹) than POC (0.21x10⁶ kg C d⁻¹)

NCOM hydrodynamic model

Fluxes of DOC and POC

D'Sa et al. 2019-Frontiers in Marine Science

Conclusions/Lessons learnt

- Optical/biogeochemical characterization of coastal waters critical to improved satellite carbon algorithms
- Multisource satellite data provided improved spatiotemporal resolution
- Tidal wetland systems can have strong tidal carbon signatures superimposed on extreme events – Geostationary satellites could provide important insights
- Carbon cycling varies as a function of TCs intensity, translational speed and precipitation - each extreme event is unique
- We observed both short- and long-term impacts of extreme events; in addition, impacts were widespread and extended beyond our study sites
- Combining hydrodynamic physical models with satellite-derived chemical indicators improved understanding of carbon cycling in complex estuarine system

Challenges and Gaps

- Limited field optical-geochemical data
- Limitations of existing bio-optical instrumentation in highly turbid waters
- Long-term impacts of extreme events can be beneficial
- Some TCs have large areal impacts and therefore greater influence on carbon cycling than most studies indicate

