

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

DOC from space

Marko Laine Finnish Meteorological Institute

14.2.2022 Ocean Carbon from Space Workshop

Background

- ESA-BICEP project WP 3.4 Dissolved Organic Carbon.
- Use advanced non-linear statistical tools to elucidate the relationship between DOC and its satellite-based proxies.
- Here we concentrate on open sea DOC, using empirical approach with multiple satellite products.

Data sets used in the analysis

	spatial	temporal	
Data set	resolution	coverage	citation
Ocean Colour CCI	1/24°	1997–2019	Sathyendranath et al. [2019]
NPP	1/12°	1998–2018	Kulk et al. [2020]
Salinity CCI	1/12°	2010–2019	Boutin et al. [2020]
SST	1/25°	2007–2020	UK Met Office [2005]
in-situ		1994–2012	Aurin et al. [2018]
in-situ		1994–2020	Hansell et al. [2021]

Table 1: The data sets used. Except for the in-situ data, we are using monthly averaged data.

In-situ DOC data set by Hansel et al. 2021

- D. A. Hansell, et al.: Compilation of dissolved organic matter (DOM) data obtained from the global ocean surveys from 1994 to 2020, 2021. doi:10.25921/s4f4-ye35
- Merged with interpolated **monthly** Ocean Colour data and primary production.
- Total of 11200 DOC data points of which 8796 has OC and other regressor values.

Different approaches to modelling DOC

- Mechanistic/physical models (Hansel 2009, DeVries and Weber 2017).
- Statistical/empirical models (Mannino 2008, Hansel 2013, Aurin et al. 2018).
- Machine learning / AI (Aurin et al. 2018, Roshan and DeVries 2017).
- All are using more or less hybrid modelling, combining different approaches.

Empirical models for DOC using satellite based regressors

- Linear Regression.
- Neural Network.
- Gradient Boosting.
- Random Forest.

DOC ~ Rrs_nnn + temp + salt
+ sqrt(pp) + lat + dts + depth
+ wclass

Kevin P. Murphy. Machine Learning A Probabilistic Perspective. The MIT Press, 2012.

Linear Regression

- Uses all Rrs variables, pp, salinity, temperature, latitude and distance to shore.
- $R^2 = 53\%$.

Rrs . Rrs.

Rrs Rrs

Rrs

Rrs

LMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Neural Network

- Shallow net with one layer and 64 units.
- Uses water class and month as additional regressors.

• R²: 80%

Random Forest Regression

- Best results for both train and test data sets.
- Used to produce global DOC data set.
- R²: 94%

How to estimate uncertainty?

Estimated monthly DOC 2010-2018

- Generated using the Random Forest model.
- 1/12° spatial resolution.
- Monthly values for 2010-2018.
- Missing values are optionally interpolated linearly.

In-situ locations for each month shown as dots

Conclusions

- The new in-situ compilation by Hansel was used with Ocean Colour and other satellite based data.
- Random forest regression provided the best results.
- Proper uncertainty quantification and validation are still the challenges.
- A hybrid empirical—physical model would perhaps be the best option here.

