Using Sentinel 3 OLCI to monitor dissolved organic carbon in the Lena River

Results from a matchup analysis of 4 years of high-frequency insitu sampling observations with S3 OLCI satellite measurements, 17.02.2022

J. El Kassar¹, B. Juhls², P. Overduin², M. Hieronymi³

¹Freie Universität Berlin, Institute of Meteorology, Berlin, Germany

²Alfred Wegener Institut, Potsdam, Germany

³Helmholtz-Zentrum hereon GmbH, Geesthacht, Germany

In situ Observations

Lena River

- 7.3 Tg C yr⁻¹ dissolved organic carbon (DOC) fluxes (Stedmon et al. 2011¹)
 → highest of all arctic rivers
- discharge of arctic rivers is expected to increase and permafrost is degrading
- transport of organic carbon from land to arctic ocean is expected to increase

Sampling Program at Samoylov Island²

- 3-4 daily sampling from April 2018 to present
- measured parameters include absorption of chromorphic dissolved organic matter (*a_{CDOM}*(254), dissolved organic carbon (DOC)
- serves well as validation dataset

¹Stedmon, C. A., et al. 2011, *Mar. Chem.* 124

a_{CDOM} and DOC from Polymer corrected S3 OLCI Observations

Spatial and Temporal Collocation of S3-OLCI Spectra

- water-leaving reflectances were calculated using Polymer v4.13³
- \approx 47% of all ice-free days
- 729 scenes, 1841400 valid pixels within 10 km diameter around Samoylov

Reflectance \rightarrow *a*_{CDOMSAT}

- bootstrap with 8000 samples
 (~5%) with repetition
- best correlation with a_{CDOM} : $\frac{Rw(665)}{Rw(560)}$ (r²=0.89)

•
$$a_{CDOMSAT} = a * e^{\left(\frac{Rw665}{Rw560} + b\right)} + c$$

$\mathsf{a}_{CDOM\,SAT} \to \textbf{DOC}_{SAT}$

- Linear relationship between *a*_{CDOMSAT} and Insitu DOC
- *a_{CDOM}*-DOC conversion taken from Juhls et al. 2020⁴

¹Steinmetz, F., et al. 2011, *Opt. Expr.* ²Juhls. B., et al. 2020, *Front. Environ. Sci.*

Results: Time Series of Satellite Retrieved

Overall good agreement!

Application: 3-Day Full River Composite

S3 OLCI a_{CDOM}(254) Composite 02 -07 06 2019 160 74°N 140 72°N 120 70°N 100 68°N 80 66°N 60 64°N 62°N 40

1

Application: 3-Day Full River Composite

S3 OLCI a_{CDOM}(254) Composite 17 -18 06 2019 160 74°N 140 72°N 120 70°N 100 68°N 80 66°N 60 64°N 62°N 40

1

Conclusions

- simple curve-fit algorithm: good results but some residual errors
- · bootstrapping yields uncertainty estimates for curve-fits

Challenges

- in some cases Rw(665)/Rw(560) vs. a_{CDOMi} nsitu deviates outside 1σ of bootstrap
- in presence of high sediment loading a_{CDOM}, DOC show larger deviations
- identify further sources of uncertainty

Outlook

- further work: extensive comparison against other algorithms
 - first results indicate curve-fit performs better (i.e. GSMA, ONNS)

Jan El Kassar

jan.elkassar@met.fu-berlin.de

1 year

- try other atmospheric corrections and/or retrievals
- validation/comparison against other retrievals, other reference data sets, other rivers
- identification of further impact factors on satellite spectra (apart from differential absorption of CDOM)

5 years

- similar high-frequency sampling on other rivers
- use available satellite observations to complement ground-based measurements, identify individual upstream sources of DOC
- extend retrieval, e.g. through utilisation of optimal estimation, bio-optical models, etc.
- use existing hyperspectral sensors

10 years

- new multispectral sensors:
 - spectral resolution of S3-OLCI
 - spatial resolution of S2-MSI
 - multispectral has superior SNR
- or even hyperspectral
- or use of LIDARs