Absorption-Based Size-Specific Primary Productivity Algorithm for the River-Influenced Northern Gulf of Mexico

Steven E. Lohrenz¹, Sumit Chakraborty², Kjell Gundersen³

¹School for Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, MA 02744, U.S.A. (<u>slohrenz@umassd.edu</u>)

²Mote Marine Laboratory, Sarasota, FL 34236, U.S.A. (<u>schakraborty@mote.org</u>) ³Institute of Marine Research (IMR), PO Box 1870 Nordnes, NO-5817 Bergen, Norway

(kjell.gundersen@hi.no)

- Introduction
 - Brief overview of study area and data
- Approach
 - The productivity algorithm
 - Model inputs

- Results and Conclusions
 - Preliminary evaluation of model performance
- Knowledge Gaps and Priorities

Introduction – Study Area and Data

• Large river system associated with the Mississippi and Atchafalaya rivers and one of the largest signals for carbon cycling in the North American continent

- Global PP models may not be able to realistically simulate regional conditions
- Here, we examine a regional absorptionbased and size-specific productivity algorithm that can be implemented using satellite-retrievable observations
- Cruise conducted in April 2009
- Stations included coastal, mid-shelf and slope waters
- Dataset included:
 - -P-E measurements
 - -Quantitative filterpad
 - -Hyperspectral irradiance profiles

Algorithm – Absorption-based and size-specific

•
$$P(z,t) = \bar{a}_{ph} P_{max}^{a_{ph}} \left[1 - \exp\left(-\frac{a_{ph}(440)\phi_{max}^{C}PUR(z,t)}{\bar{a}_{ph}P_{max}^{a_{ph}}}\right) \right] (mol \ C \ m^{-3} \ h^{-1})$$

• $PUR(z,t) = \int_{PAR} \hat{a}_{ph}(\lambda) E_d(z,\lambda,t) d\lambda$ where $\hat{a}_{ph}(\lambda) = a_{ph}(\lambda) / a_{ph}(440)$

•
$$\bar{a}_{ph} = \frac{\int_{400}^{700} a_{ph}(\lambda) E_d(z,\lambda,t) d\lambda}{\int_{400}^{700} E_d(z,\lambda,t) d\lambda}$$
 where $a_{ph}(\lambda) = \hat{a}_{ph}(\lambda) a_{ph}(440) (m^{-1})$

- $\phi_{max}^{C} = 0.345aph_slope^{2} + 0.195aph_slope + 0.017 (mol C (mol quanta)^{-1})$ where $aph_slope = \frac{[a_{ph}(443) - a_{ph}(510)]}{510 - 443} (m^{-1} nm^{-1})$
- $P_{max}^{a_{ph}} = Chl \cdot P_{max}^{B} / \bar{a}_{ph} = 2.00 \times 10^{-5} e^{0.306(T)} (mol \ C \ m^{-2} h^{-1})$

• $IP = \int_0^{DL} \int_0^D P(z,t) dz dt$ (mol C m⁻² d⁻¹) where DL is daylength and D is water column depth

Absorption shape vectors and $a_{ph}(440)$

Model Inputs

Photophysiological parameters

Results and Conclusions

- Preliminary demonstration of model shows it is able to represent order of magnitude variations in productivity from nearshore to slope waters
- Largest deviations were in near surface waters, where sensitivity to maximum photosynthetic rate estimates were highest
- Positive bias in model for slope and mid-shelf and negative for coastal

PP(z)_φ = model PP(z)_std = measured

Knowledge gaps and priorities

- Knowledge gaps
 - Large source of uncertainty in absorption-based models in the maximum photosynthetic rate parameter
 - Need for additional in situ measurements to better characterize PP parameters
- Priorities
 - 1 year
 - Expand analysis to include datasets from other seasons and conditions to provide more comprehensive representation of photophysiological parameters
 - Evaluate performance of model using satellite-retrieved parameters ($a_{ph}(440)$, aph_slope , K_d , and T)
 - 5 year
 - Apply algorithm to emerging hyperspectral sensors (PACE, GLIMR, SBG)
 - Compare model performance to other formulations including global algorithms
 - 10 year
 - Explore performance and suitability of algorithm in other regions, and potential "nesting" of models