Toward the Synergistic Use of Ocean Colour products to Improve the Description of Phytoplankton Productivity within the Global Ocean

A. Bracher1,2, H. Xi1, J. Oelker1,2, S. Losa1, L. Alvarado1, M. A. Soppa1, A. Brito3, V. Brotas3, M. Costa4, L. Favareto3, M. Gomes3, Lars Nerger1, V. P. Suseelan4, A. Richter2, C. Voelker1, E. Alvarez5

17 February 2022; astrid.bracher@awi.de

1 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
2 Institute of Environmental Physics, University of Bremen, Bremen, Germany.
3 MARE, University of Lisbon, Portugal
4 Department of the Geography, University of Victoria, Canada
5 National Institute of Oceanography and Applied Geophysics, Trieste, Italy
Uncertainty in marine primary production estimates

Diagram of coupling biogeochemical model REcoM2 (Hohn 2009; Schartau et al. 2007, Alvarez et al. 2019) and RTM following Dutkiewicz et al. (2015, 2018). Figure from Alvarez et al. (to be submitted to JAMS)

GOAL: Improve data sets for model development via synergy across sensors and within the euphotic zone:
- Phytoplankton composition
- Spectral composition of underwater light field

Diagram of coupling biogeochemical model REcoM2 (Hohn 2009; Schartau et al. 2007, Alvarez et al. 2019) and RTM following Dutkiewicz et al. (2015, 2018). Figure from Alvarez et al. (to be submitted to JAMS)
Ocean Colour beyond multispectral satellite data

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Time Period</th>
<th>Resolution</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIAMACHY/ENVISAT</td>
<td>2002-2012</td>
<td>30 x 60 km pixel</td>
<td>6 days global coverage</td>
</tr>
<tr>
<td>GOME-2/METOP</td>
<td>2007 -</td>
<td>40 x 80 km pixel</td>
<td>3 days global coverage</td>
</tr>
<tr>
<td>TROPOMI/S5P</td>
<td>5/2018 -</td>
<td>5.5 x 3.5 km pixel</td>
<td>daily global coverage</td>
</tr>
</tbody>
</table>

similar to DESIS 2018-, PRISMA 2019-
Diffuse attenuation (Kd) in three spectral bands from S5P (TROPOMI) Vibrational Raman Scattering (VRS): UV to short blue

PhytoDOAS* Kd-retrieval (basis Vountas et al. 2007, Dinter et al. 2015, Oelker et al. 2019)

S5P Inelastic Scattering (VRS) in Ocean Water

S5P Diffuse Attenuation in Ocean Water

*PhytoDOAS: Differential Optical Absorption Spectroscopy to derive OC products

First time Kd retrievals in UV-AB & UV-A from satellite UV measurements via inversion!
Perspective: Application of global data sets of S5P Kd(UVAB), Kd(UVA) and Kd(short-blue)

Higher accuracy of ocean SW radiation

Ocean – atmosphere radiation feedback

Ocean photochemistry (some UV spec.):

- Primary production (50% of global produced in the ocean!)
- Photodegradation (phyto, CDOM, ...)
- Trace gas (e.g. halocarbons) & aerosol precursors

Global biogeochemical cycles
e.g. carbon pool
Marine Food Web

Standard ocean color remote sensing product only Kd490 – extend to spectral Kd (e.g. use Lee et al 2005 / Jamet et al. 2012) and then combine S5P UV-blue & S3/MODIS/... to obtain Kd at 325 373 406 412 443 510 560 620 (665? 674? 682?)

See posters: Wang et al. #147 (in situ & VIRRS); Dionisi et al. #188 (Aeolus Kd & bioARGO UV Kd)
EOF-PFT: Global approach for PFT chlorophyll retrieval using ocean color reflectance data and SST

Xi et al. RSE 2020: Xi et al. JGR 2021

- A set of empirical orthogonal function based algorithms applied to RRS at 9-11 bands
- Capability of retrieving Chla of 6 phytoplankton groups

Global incl. pixel uncertainty at 4km globally from 2002 until today at https://marine.copernicus.eu/

- See also Poster Xi et al. #175
In situ matchups to S5P sparse, but S5POC agrees better (coastal areas) than OLCI-PFT to in-situ.
Synergy of hyper- and multispectral satellite products: three major PFT In the global ocean at 4km pixel resolution

Physical value is given by the **hyperspectral product** (SCIAMACHY-PhytoDOAS)
Spatial variability is given by the **multispectral product** (OCCCI-OCPFT, adapted Hirata et al. 2011)

GOAL: PFT satellite product with better spatial, temporal and group-specific information
Synergy of hyper- and multispectral satellite products: three major PFT in the global ocean at 4km pixel resolution

Losa et al. Frontiers in Marine Sciences 2017

Benefits of synergistic (SCIAMACY-PhytoDOAS+OCCCI-OCPFT) PFT product over TCHL or just OCPFT or PhytoDOAS data assimilation has been shown in global coupled biogeochemical ocean model (REcoM2-MITgcm) by Pradhan et al. JGR-Oceans 2020.
High resolution of PFTs **below satellite view** from ship-towed undulating radiometry

Using EOF based PFT retrieval on derived from $K_d(\lambda, z)$ with HPLC-PFT

Bracher et al. FMARS 2020

TChl-a & PFT-CHL retrieved from hyperspectral underwater irradiance data

Potential of BioARGO:
CHL via NN for PSC (Sauzede et al. 2015)
Hyperspectral (Organelli et al. 2021)
Explore hyperspectral ACS data for PFT

PFT data: https://doi.pangaea.de/10.1594/PANGAEA.913536
Priorities for closing knowledge gaps

1-2 years:
Global (2018-) S5P Kd & PFT-Chl incl. uncertainties (fit error, model error, validation)
Combine S5P-OC retrievals with S3 (and similar data for long time series) to obtain
- Kd(\(\lambda\)) at \(\geq 9\)-bands from 325-700 nm (325, 373, 405, 412, 443, 490, 510, 560, 665)
- higher quality cyanobacteria and diatom PFT-Chl from satellite (models)

Multiplatform (bioARGO, towed, satellite) AOP & IOP data fusion for 4D-PFT-Chl, Kd, ...

5 years:
Protocols for multiplatform approaches additional data incl. uncertainties
Synergy/hybrid/data fusion across satellite + multiplatform sensors
New products from S5P (S5): UV in water: MAAs, CDOM sources, photodegradation; Chla fluor., DOC
Transfer S5P-OC know-how to future high spectrally resolved OC retrievals: S4 (GEO, also GEMS), but also PACE, EnMAP (DESIS, PRISMA)

10 years:
Kd(\(\lambda\)), PFTs, PB, DOC,... long term climate data sets at best spatial & temporal coverage incl. uncertainty from synergy of historic, current and upcoming sensors
4D OC products as basis for reanalysis of ocean state regarding BCP and beyond

Improve match of models and observations to enable reliable assessment/predictions of BCP (ocean C)!
Related references

Álvarez E., Losa S., Bracher A., Thoms S., Völker C. Impact of non-photosynthetic pigments content in the global variability of phytoplankton absorption coefficients. To be submitted to JAMS.

