Gap 1

No formal definition of phytoplankton community composition (PCC) and its quantities for remote sensing.

Gap 2

Taxonomic data are largely underutilized for algorithm development and validation. We are also lacking picoplankton data.

Gap 3

Phytoplankton taxonomy and morphology are necessary to partition phytoplankton from total carbon and create conversion tables.

Final product

Data tables necessary to build and validate hyperspectral satellite algorithms.

IDENTIFYING EXISTING GAPS IN THE DETECTION OF PHYTOPLANKTON COMMUNITY COMPOSITION FROM SPACE

Aimee Neeley, Ivona Cetinic, Jeremy Werdell and Lachlan McKinna

NASA Goddard Space Flight Center, USA Science Systems and Applications, Inc, USA Morgan State University, USA Go2Q Pty Ltd, Australia

Solution 1: define PCC and variables measured

Definition	Pros*
Size Class	Simplest; informative for carbon export
Biogeochemical function	Informative to understand ecosystem function
Pigment Type	Relates back to what the satellite 'sees'
Taxonomy	Provides morphological and direct community composition information
What variables are we me	
Presence/absence/dominance	
*not all inclusive Cell abu	

Cons*

Information on biogeochemistry and taxonomy is limiting

Not always informative to taxonomy and morphology

Pigments between taxonomic groups largely overlap

Time consuming to collect; not widely available

easuring?

Carbon abundances

ndances/biovolume

Solution 2: Make phytoplankton taxonomic data accessible

https://www.us-ocb.org/ptwg-tm/

Standards and practices for reporting plankton and other particle observations from images Technical Manual

A standardize procedure for formatting and archiving imagery data was developed to make these data more accessible for model/algorithm development. This pathway is described in the graphic below.

The **full size spectrum** of phytoplankton taxonomy (picoplankton to microplankton) are necessary to define and detect PCC. Taxonomy data should be traceable to a known taxonomic authority, such as WoRMs or AlgaeBase.

Matek et al. submitted **Under development**: Standardized procedure for formatting and archiving standard flow cytometry and microscopy data.

NCMA website

Solution 3: Make phytoplankton taxonomic data accessible

*Phytoplankton taxonomy/morphology + AOPs/IOPs =

Algorithms and models would benefit from the development of standardized conversion tables that convert phytoplankton morphological characteristics to carbon.

Development and validation of hyperspectral algorithms to derive the different definitions of PCC (green) would benefit from **phytoplankton** g **taxonomy information** determined by microscopy, standard flow cytometry and advanced in-flow imaging technology (e.g., IFCB, FlowCAM).

Readmap of ocean color products and input Ancillary products

Taxonomic Composition

Concentration of Taxonomic Group (cells, biovolume, carbon).

green = products blue = inputs, Rrs and IOPs gray = mixed layer depth, SST, etc. purple = dependencies

Final Product: Development of hyperspectral PCC algorithms

Advanced PCC algorithms that utilize hyperspectral data are the future. The Ocean Color Instrument on NASA's PACE* mission will pave the way with 5nm spectral resolution.

*Plankton, Aerosol, Cloud, ocean Ecosystem

