INFLUENCE OF CALCIFYING PHYTOPLANKTON BLOOMS ON CARBON TRANSFER IN THE MESOPELAGIC OCEAN

combining ocean colour remote sensing and BGC-Argo float data

Griet Neukermans1,*, Nathan Briggs2, Louis Terrats3,4 and Hervé Claustre5

1 Ghent University, Ghent, Belgium. * grriet.neukermans@ugent.be
2 National Oceanographic Centre, Southampton, UK
3 Sorbonne University, Villefranche-sur-Mer, France
4 ACRI-ST, France
1 Phytoplankton blooms and particle flux in the Iceland basin

BGC-Argo float trajectory

MODIS PIC summer climatology

Bloom 1
Bloom 2
Bloom 3

BGC-Argo float PROVOR float

357 profiles (0-1000m) every 5 days, equipped with ECO-Triplet (F_{Chl}, bb, F_{CDOM}).
Vertical res: 1m (0-250 m), 10m (250-1000m)

Neukermans et al. (in prep.)

E. huxleyi

Z_{eu} MLD
Phytoplankton blooms and particle flux along the Patagonian Shelf break

BGC-Argo float trajectory

- Argentina
- Shelf break (700m)
- BGC-Argo float on Malvinas current
- Malvinas Islands
- Bloom 1
- Bloom 2
- Bloom 3
- MODIS Chl-a climatology

417 profiles (0-1000m) at HIGH RESOLUTION (daily at 1m depth interval), equipped with ECO-Triplet (F_{Chl}, b_{bb}, F_{CDOM}).

High-resolution float operation allowed estimation of sinking speed of large particles using F_{Chl} and b_{bp} spikes, w_{Chl} and w_{bbp}, respectively (Briggs et al. 2020).

Neukermans et al. (in prep.)
Gaps and priorities

Short term priorities

Expand study to global BGC-Argo equipped with b_{bp} and FChl sensors

Develop autonomous PIC sensor for in situ observing platforms (ongoing CarbOcean project)

Mid-long term priorities

Deliver proof-of-concept for observing PIC and POC components of the Biological Carbon Pump from BGC-Argo floats (ongoing CarbOcean project)

Address knowledge gaps on the role of the oceanic carbonate pump and climate feedbacks