Remote Sensing for Ocean Acidification:

Estimation of Dissolved Inorganic Carbon using a Neural Network Approach

Sunny Pinkham, William M. Balch, Catherine Mitchell

BACKGROUND:

- \uparrow Atmospheric CO2 \rightarrow \uparrow Ocean Acidification
- Impacts calcifying organisms
- Carbonate system controlled by balance of DIC
 - Aqueous CO2
 - Carbonic acid
 - Bicarbonate
 - o Carbonate

Neural Network (NN): machine deep learning structure that learns a set of undefined rules to transform input data into expected results. Once rules are learned (NN training), new input data can be fed into the NN to generate predictions.

IMPORTANCE:

Maine's economy is heavily dependent on the fisheries industry. In 2020, 80-85% of landings were comprised of calcium carbonate shelled organisms.

OBJECTIVE:

Quantify the DIC carbon pool in the Gulf of Maine via ocean color satellite reflectance data.

METHOD:

Train a neural network on field DIC measurements matched to corresponding satellite pixels.

DATASET:

Rrs Regressions:

Question: Do the field R_{rs} data and satellite R_{rs} data agree, so that a Neural Network (NN) can be trained on the field R_{rs} values and be applied to the satellite R_{rs} values?

NEURAL NETWORK:

INPUT DATA:

- Field or Satellite
- SST
- R_{rs}(412)
- R_{rs}(441)
- R_{rs}(490)
- R_{rs}(555)
- R_{rs}(671)
- R_{rs}(684)

WORKFLOW:

- 1) Trained on field R_{rs}
- 2) Tested on field DIC
- 3) Applied to satellite Rrs
- 4) 10x Ensemble model trained on randomly resampled data
 - a)increased robustness for small

data set

- b)provides pixel by pixel
 - ensemble mean with standard error of mean

DATA SPLIT:

- 38 × +

TEST 15%	TRAINING 85%				Validation 15%
Ensemble Training Set Resampling	Training set 1				Validation Set 1
	Validation Set 2	Training Set 2			
	Training Set 3		Validation Set 3	Training Set 3	

NN Ensemble Test Predictions vs Test Field DIC

RESULTS:

Median Absolute Error: 1.01376 (1.4%)

Bias: 0.99070 (-1%)

NN Satellite Generated Predictions:

CONCLUSIONS:

- Using a NN approach, we can predict DIC from satellite Rrs and SST data with a MAE of 1.4% and a bias of -1%.
- When applied to satellite imagery, the spatial patterns correspond to our field observations.
- The variability observed between different NN architectures and between ensemble runs of one architecture is likely an effect of the limited size of our training data set.

NEXT STEPS:

- PCA transformation of the input data
- Train the neural network on satellite Rrs values:
 - This will yield more matchups.
 - We expect increased generalization due to randomness provided by multiple satellite files mapped to one field DIC value.
- Include satellite SSS with input data
 - Preliminary tests showed an average 18% decrease in test MAE scores when field salinity was included as input.
- Increase training data set size:
 - Expand satellite matchup window.
 - Gather more field DIC data .