

Uncertainty Quantification Activities of Geophysical Retrievals within the PACE Mission

Amir Ibrahim <u>amir.ibrahim@nasa.gov</u> Andy Sayer <u>andrew.sayer@nasa.gov</u> Lachlan McKinna, Kirk Knobelspiesse, Minwei Zhang, Meng Gao, Bryan Franz, and Jeremy Werdell

Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Mission

- Primary instrument is the Ocean Color Instrument (OCI) hyperspectral scanning radiometer
- 2 Contributed multi-angle polarimeters: HARP-2, SPEXone

https://pace.gsfc.nasa.gov/

Required OCI Science (ocean) Products

Data Product	Baseline Uncertainty Δho_w	
Water-leaving reflectances centered on (±2.5 nm) 350, 360, and 385 nm (15 nm bandwidth)	0.0057 or 20%	Atmospheric Correction using OCI alone
Water-leaving reflectances centered on (±2.5 nm) 412, 425, 443, 460, 475, 490, 510, 532, 555, and 583 (15 nm bandwidth)	0.0020 or 5%	
Water-leaving reflectances centered on (±2.5 nm) 617, 640, 655, 665 678, and 710 (15 nm bandwidth, except for 10 nm bandwidth for 665 and 678 nm)	0.0007 or 10%	*Dottor obaractorization
these are required for science goal success & drive OCI design		of aerosols using MAP
Additional required products to be generated		1
Chlorophyll concentration		
Spectral diffuse attenuation coefficients		
Spectral absorption coefficients (phytoplankton, CDOM+NAP)		
Spectral backscattering coefficients		1
Fluorescence line height		1

Each uncertainty requirement is defined as the maximum of the absolute and relative values for Level-2 satellite data processing (geophysical values in the original satellite coordination system). These requirements are defined for \geq 50% of the observable deep ocean (\geq 1000 m).

*L1 requirements also exist for atmospheric products

Data product uncertainties

- Comments on how to proceed with uncertainty metrics
 - Possibilities for generating them
 - Limitations in generating them
 - What spectral ranges (when appropriate)?
 - How to maximize information & minimize file sizes / computational burdens?

Uncertainty in ocean reflectance after the Atmospheric Correction

A main goal for PACE is to provide pixellevel uncertainty

Uncertainties in Ocean Colour Remote Sensing

> Reports of the International Ocean-Colour Coordinating Group

REPORT NUMBER 18

An Affiliated Program of SCOR An Associate Member of CEOS

PACE science and applications team Working group goals

- To assess various sources of uncertainty relevant to the PACE mission
- To **document** what is currently known and is unknown
- To identify what poorly-known aspects we can make progress on before/during PACE's lifetime
- To suggest appropriate methods for uncertainty propagation and metrics for validation, together with their limitations
- To **encourage** and **guide** the community on formulating the above
- To **report** back to the broader team and the community via Tech Memo/paper(s)

Working group discussions and report outline

1. Definitions and terminology

Uncertainty terminology:

- Generally following ISO Guide to Uncertainty in Measurement (GUM): <u>https://www.iso.org/sites/JCGM/GUM-introduction.htm</u>
- Distinction between uncertainty and error, accuracy and precision

2. Instrument-related uncertainties

- Radiometric
- Non-radiometric

3. Uncertainties in the L2 retrieval process

- Forward model uncertainties
- Inversion-related uncertainties
- Categorical or non-Gaussian errors (e.g. land/ocean or cloud mask misidentification)

4. Propagating uncertainties from L1 to L2

- Discuss various techniques (OE, MCMC, AI/ML, empirical)
- Highlight strengths and limitations
- Assumptions, practicality
- Possibly provide an example with flow chart/pseudocode
- Options if you can't/won't do forward propagation

- 5. Validating retrievals and uncertainty estimates
- Validating retrievals
- Validating L2 uncertainty estimates
- Understanding and communicating the results
- Assessing retrievals/uncertainties if we don't have a comparison data source

6. Towards level 3 uncertainties and beyond