

Near-Surface Stratification Due to Ice Melt Biases Arctic Air-Sea CO₂ Flux Estimates

Yuanxu Dong^{1,2*}, Mingxi Yang², Dorothee C. E. Bakker¹, Peter S. Liss¹, Vassilis Kitidis², Ian Brown², Melissa Chierici^{3,4}, Agneta Fransson³, and Thomas G. Bell²

*Yuanxu.Dong@uea.ac.uk

Background Photo by Adrienne Tivy

¹University of East Anglia, ²Plymouth Marine Laboratory, ³Fram Centre, ⁴University Centre in Svalbard

Arctic Summertime Shallow Stratification

Bulk flux: CO_2 flux $\propto K (fCO_{2w} - fCO_{2a})$

- K: Gas transfer velocity
- **fCO_{2a}**: CO₂ fugacity at the atmosphere
- **fCO_{2w}**: CO₂ fugacity at the **sea surface**
- fCO_{2w} is typically measured at ~5 m depth.
- Sea-ice melt leads to shallow stratification and results in different fCO_{2w} values between the surface and 5 m.
- Most of the Arctic Ocean CO₂ uptake estimates are based on the bulk method.

Affected by the shallow stratification

Eddy covariance air-sea CO₂ flux

Direct flux measurements in the atmosphere

 CO_2 flux = $\rho \overline{c'w'}$

ρ: Dry air density; *c*: Atmospheric CO₂ mixing ratio;
w: vertical wind speed; ': Fluctuation; ——: Average

Unaffected by the shallow stratification

Fluxes During Arctic Cruise JR18007

Potential Impact on Arctic Ocean CO₂ Uptake Estimates

Conclusions:

- The eddy covariance (EC) air-sea CO₂ flux is consistently higher in magnitude than the bulk flux in sea-ice melt regions, which suggests an underestimation of the bulk air-sea CO₂ flux.
- Interpolating results from cruise JR18007 to the entire Arctic Ocean, we found: The summertime near-surface stratification due to sea-ice melt could lead to a ~10% (with high uncertainty) underestimation of the annual Arctic Ocean CO₂ uptake.
- Detailed studies of upper ocean (0–10 m) gradients in CO₂ concentration, temperature, salinity, and biological rates along with EC flux measurements, are required to improve understanding of sea-ice melt impacts on air-sea exchange.

Look at our GRL paper for details: <u>https://doi.org/10.1029/2021GL095266</u>

Knowledge Gaps and Priorities for Next Steps

Knowledge gaps:

The difference of the CO₂, temperature, salinity, dissolved inorganic carbon (DIC), alkalinity (TA), and biological rates between the microlayer (~100 μ m depth) and the bulk seawater (~5 m depth).

Priorities:

Timescales (years)	1	5	10
Priorities	Direct measure the upper ocean (0–10 m) variables (mentioned above) using CTD along with eddy covariance (EC) flux measurements in some Arctic sea-ice melt regions (case study).	Widely measure the upper ocean variable (e.g. CO_2) gradients in the Arctic ocean along with EC measurements (MOSAiC Expedition might help).	Make use of the <i>in-situ</i> measurements to calibrate the satellite data in the Arctic Ocean and estimate the impact of the shallow stratification due to sea-ice melt on the entire Arctic Ocean using these satellite data.